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Liquid-metal magnetohydrodynamic flow in a system of electrically coupled U-bends 
in a strong uniform magnetic field is studied. The ducts composing the bends are 
electrically conducting and have rectangular cross-sections. It has been anticipated that 
very strong global electric currents are induced in the system, which modify the flow 
pattern and produce a very high pressure drop compared to the flow in a single U-bend. 
A detailed asymptotic analysis of flow for high values of the Harmann number (in 
fusion blanket applications of the order of lo3-lo4) shows that circulation of global 
currents results in several types of peculiar flow patterns. In ducts parallel to the 
magnetic field a combination of helical and recirculatory flow types may be present and 
vary from one bend to another. The magnitude of the recirculatory motion may 
become very high depending on the flow-rate distribution between the bends in the 
system. The recirculatory flow may account for about 50 O/O of the flow in all bends. In 
addition there are equal and opposite jets at the walls parallel to the magnetic field, 
which are common to any two bends. The pressure drop due to three-dimensional 
effects linearly increases with the number of bends in a system and may significantly 
affect the total pressure drop. To suppress this and some other unwelcome tendencies 
either the ducts perpendicular to the magnetic field should be electrically separated, or 
the flow direction in the neighbouring ducts should be made opposite, so that leakage 
currents cancel each other. 

1. Introduction 
In many applications of magnetohydrodynamics, such as electromagnetic pumping, 

flow coupling, energy conversion, etc., an electrically conducting fluid flows in a system 
of ducts rather than in a single duct. If ducts are electrically separated from each other, 
for example by means of electrical insulation of the duct walls or using insulating 
ceramic layers inside the electrically conducting walls (so-called flow channel inserts, 
Malang et al. 1988), electric currents induced in one duct are confined to it, so that each 
duct may be treated individually. On the other hand, in the absence of electrical 
separation currents induced in one duct may enter the other ducts via common 
electrically conducting walls and affect the flow in the whole system. These electric 
currents are called the global currents (Madarame, Taghavi & Tillack 1985). 

In some situations this effect may be very significant and even dominant. A 
prominent example is provided by two toroidal concepts of self-cooled liquid-metal 
blankets for tokamak fusion reactors (Smith et al. 1985; Malang et al. 1988). A 
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FIGURE 1. Schematic diagram of a toroidal liquid-metal blanket concept: flow in a system of 
electrically coupled U-bends. The blanket first wall is at x = d. 

simplified schematic diagram of the blanket is shown in figure 1. The geometry consists 
of the so-called toroidal ducts, which are aligned with the main component of a strong 
magnetic field, and two sets of radial ducts, which supply liquid metal to and remove 
it from the toroidal ducts. The radial ducts are perpendicular to the magnetic field. 
Thus an electrically conducting fluid, which cools the plasma facing first wall, flows in 
a system of U-bends. The U-bends have common walls parallel to the magnetic field. 
If these walls are electrically conducting, global electric currents may circulate in the 
whole system of bends, affecting both the flow structure and the pressure drop, the 
characteristics of great importance for fusion blanket applications. 

The significance of global current effects is due to the magnitude of three- 
dimensional currents (the currents due to three-dimensional effects) induced in the U- 
bend geometry. If the dividing walls are removed, a system of U-bends becomes a wide 
single U-bend. In such a bend a very high voltage difference between the sidewalls of 
the radial ducts is induced. This difference is proportional to the duct width L (for more 
details see 44.2). Owing to the opposite flow direction in the two radial ducts, the 
induced voltage for y < I and for y > 1 is of opposite sign (see figure 1). This voltage 
may shortcut between the radial ducts along conducting walls or inside the fluid and 
cause very strong global currents producing a large pressure drop. The presence of the 
dividing walls complicates the problem since these walls provide additional paths for 
the electric current. The importance of the global currents for fusion blanket 
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applications was shown first by Madarame et al. (1985) on the basis of a very simplified 
flow model. 

The present paper treats the three-dimensional flow in a system of n U-bends under 
the following assumptions (cf. Hua et al. 1988; Moon & Walker 1990; Molokov & 
Biihler 1994) (i) the induced magnetic field may be neglected (small magnetic Reynolds 
number); (ii) the applied magnetic field is strong ( M  $- 1, N % M3/'),  so that viscous 
effects are confined to thin layers and inertia forces can be neglected everywhere. Here 
M = B, a(a/pv)'l2 is the Hartmann number and N = aaB,2/pv, is the interaction 
parameter, where (r, p, v are the electrical conductivity, density and kinematic viscosity 
of the fluid, B, is the induction of the applied constant magnetic field, v,, is the 
characteristic velocity, and the characteristic length a is half the distance between tops 
and bottoms of the radial ducts. In fusion blanket applications M =  103-104 and 
N = 102-105; (iii) electrically conducting walls are much better conductors than all the 
boundary and internal layers (c  % M-lI2), so that currents conducted by the layers are 
neglected. Here c = cr,tw/cra is the wall conductance ratio, where cr, and t, are the 
wall conductivity and thickness; (iv) radial ducts are semi-infinite, so that the flow is 
fully developed as x +- - 03. 

The flow in a single U-bend (n  = 1) has been considered by Molokov & Buhler 
(1994) (hereinafter referred to as MB94) under the assumptions listed above. In a 
strong magnetic field, in both radial and toroidal ducts there are cores and boundary 
layers at all duct walls (figure 2). At walls parallel to the magnetic field the layers, which 
are called parabolic ones due to the nature of the equations governing the flow there, 
have thickness O(M-l/'). They carry non-zero volume flux in jets with velocity 
O(M1/'). In the cores of both the radial and toroidal ducts the fluid flows perpendicular 
to the magnetic field. The two cores are separated by the internal layer at x = 0. In the 
radial duct part of the flow is carried by the core, while the other part is carried by the 
layers at walls 5 and 8 (wall numbers are shown in figure 2). When the fluid approaches 
the toroidal duct from the radial one it meets an internal layer at x = 0, which for the 
fluid appears to be a permeable wall. Part of the fluid flows around this layer along the 
layers at the sidewalls 5 and 8 or upward in the internal layer to enter the layer at wall 
2. The other part crosses the internal layer, penetrates into the core of the toroidal duct, 
flows in planes perpendicular to the magnetic field toward the walls 1, 3 and 9 and 
enters the parabolic layers at these walls. In the toroidal duct all the volume flux is 
carried by parabolic layers at walls 1, 2, 3 and 9 by high-velocity jets, since the y- 
component of the core velocity vanishes. The flow distribution between the layers in the 
toroidal duct varies with y .  The volume fluxes carried by the layers at walls 1, 3 and 
9 and by the internal layer at x = 0 for 0 < y < 2 monotonically increase with y ,  while 
that carried by the layer at wall 2 monotonically decreases with y .  Under certain 
circumstances the flow in the latter may become reversed, which leads to a recirculatory 
flow in a part of the toroidal duct. In addition there is mass exchange between the 
parabolic layers at walls 1,2, 3 and 9 through the corners Al-A4, so that flow patterns 
of a helical type may be present. A number of qualitatively different flow patterns 
which may occur for certain range of the wall conductance ratio and the toroidal-duct 
aspect ratio d, have been presented in MB94. 

Electrical coupling of the parallel channels brings new effects. Molokov (1993) 
considered the flow in a system of electrically coupled straight thin-walled rectangular 
ducts, which corresponds to that in the radial ducts as x + - 00. The assumptions were 
less restrictive than in this paper. It has been shown that even in straight ducts the flow 
pattern may involve forward and backward jets if the pressure gradients in individual 
ducts are not equal. Since the flow pattern in a system of U-bends contains features of 



76 S .  Molokov and R. Stieglitz 

FIGURE 2. Flow subregions for M $ 1 and wall numbers of bend i for y < 1. The walls are: blanket 
first and second walls (1,2); sidewalls of the toroidal(3, 9) and the radial (5,8) ducts; top and bottom 
of the radial duct (6,7); bottom of the toroidal duct (4). Flow subregions are: CR, CT-  cores of the 
radial and toroidal ducts, H - the Hartmann layers, F, S, I ,  SRL, SRR, STL, STR - the parabolic 
layers, A1-A4 - the corner layers. 

both the flow in a single U-bend and that in electrically coupled straight ducts, the 
resulting flow structures are even more complicated. 

2. Formulation 
Consider the steady isothermal flow of a viscous conducting incompressible fluid in 

a system of II electrically coupled U-bends (see figure 1). Each U-bend is composed of 
two radial ducts perpendicular to the external magnetic field B = Boy^, and a toroidal 
duct parallel to the field. All ducts have rectangular cross-sections. The radial ducts are 
semi-infinite, so that far away from the junction x = 0 the flow is fully developed. The 
system of U-bends is symmetric with respect to the plane y = I ,  and since inertia is 
assumed to play no role, the flow in a half of the system y c 1 is considered under 
appropriate symmetry conditions. 
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Consider the flow in a U-bend i .  The walls of this bend are numbered from 1 to 9, 
as shown in figure 2. The sidewalls are at z = z ( ~ )  (i = 1, ..., n +  1); z(l) = 0, z(%+') = L .  
The dividing walls 8 and 9 for bend i (i * 1) coincide with walls 5 and 3 for bend i- 1, 
respectively. The dimensionless inertialess inductionless equations governing the flow 
in bend i are (e.g. MB94) 

3 (1 a, b) ~ - 2 ~ 2 ~ ( i )  +j(O 9 = v p ,  jCf' = - v p  + u ( i )  x p 
v.  v( i )  = 0, v . p  = 0. (1 c, 4 

The fluid velocity di),  the electric current densityj"), the electric potential qP and the 
pressure p ( i )  are normalized by u,, u,B,cr, v,B,a and cm,, B:u, respectively. The 
boundary conditions at each wall of bend i are the no-slip condition 

(1 el u ( i )  = 0 

(1.f) 

(1 g> 

j c i )  -A, = c$7;q5iL) for all other walls. (1 h )  

and the thin-wall conditions (e.g. Hua & Picologlou 1991) 
,(O - .(t+l) = (0 2 (0 for k = 3, 5( i  * n) ,  

jf-1) - jZ .(i) = ck (i) V,$f) 2 k = 8,9(i + I) ,  
Jz  Jz  Ck: vk:& 

for 

Here A, is the inward normal unit vector to wall k ;  cf) = vi)f&)/ou is the wall 
conductance ratio; (rf) and t:) are the electrical conductivity and thickness of wall k, 
respectively; VE is the Laplacian in the plane of wall k ;  g5t) is the wall potential equal 
to the fluid potential on wall k ;  cjg) = @-'), #) = for i + 1. 

The symmetry conditions are 

$( i )  = p( i )  = 0 at y = 1. (1 i) 
In the radial ducts, far from the junction, the flow is fully developed, so that 

The characteristic velocity u, is defined as an average velocity in the whole system, 

(1 k)  

i.e. 
11 

C Q(i)  = 2L. 
i=l  

The total flow rate is Q = 215 and the flow rates Q(i)  in individual bends are 

3. Flow analysis at high Hartmann numbers 
At high Hartmann numbers the flow exhibits the following subregions (figure 2): the 

inviscid cores of the radial and toroidal ducts CR and CT, the Hartmann boundary 
layers H near the walls perpendicular to the magnetic field with a thickness O(M-l), 
the parabolic layers with a thickness O(M-'l2)), the corner layers A1-A4 with 
dimensions O ( A L - ' / ~ )  x O(M-1'2). The parabolic layers are at the sidewalls of both 
radial and toroidal ducts (SRL, SRR, STL and STR), at the first wall (F) ,  at the second 
wall ( S ) ,  and the internal layer I at x = 0. Layers I and S merge at y = 2. Corner layers 
A1-A4 are formed at intersections of the parabolic layers. 
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governing the wall potentials $:) and the core pressures p&(x, z) : 
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Following the analysis of MB94 the problem (1) is reduced to a system of equations 

$f )  = $?-I), 4;) = $r-1) for i -+ 1, (2 m, n) 

where V,, is the vector gradient in the plane (x , z ) .  In the above i varies from 1 to n. 
Consider the boundary conditions for system (2). On the interface between the walls 

and at the junction x = 0 the wall electric potential is continuous. In addition, 
Kirchhoffs law applies for components of the wall electric currents normal to the 
interface. If rkmj is the common boundary of three walls k,  m and j (wall j belongs to 
a neighbouring bend i -  1 or i+ 1 and is equal to either k or m), the conditions are: 

(3  4 $p = $g = $y), 

where sAk,.s", and Jj are outward normal vectors to Tkm, in the planes of walls k, rn and 
j ,  respectively. 

If only two walls k and m intersect, the conditions (3  a, b) reduce to 

As x + - 00, the flow becomes fully developed. This gives 

( 6 )  (0  (i) a$?) - a&) - a$, - -- W 8  = & = 0. 
ax ax ax ax az 

The symmetry conditions are 

( 5 )  

at y = 1. (6) = $f) = 0 4:) = $f) = 

Equations (2)-(6) constitute the problem for the wall potentials and the core 
pressures in the radial ducts. It should be stressed that this system involves two- 
dimensional equations only, while the original problem is three-dimensional. Once the 
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problem (2)-(6) is solved, the other variables in cores CR and CT can be expressed in 
terms of 4;) and p$k as follows: 

(7a,  b) v(i) C R  - - -v  zz p‘ & +? x v,, $$k, v$)T = 9 x 8 , ~  $$)T, 
$gk = $p+(1-&)[$$L$:)], $gk = (1 -J)l-1)$p7 (7c, 4 

(7 e-d 

Equations (7) demonstrate certain specific features of the flow in the toroidal duct of 
bend i .  They are (i) the core CTdoes not carry volume flux in the y-direction, so that all 
the volume flux is carried by the parabolic layers; (ii) the electric potential @)T is a 
streamfunction for the core velocity. The fluid in the core flows in the (x, 2)-plane, i.e. 
perpendicular to the magnetic field following the isolines of $r)(x, z), the latter being 
responsible for the flow distribution among the parabolic layers in the whole toroidal 
duct (the so-called pumping effect, cf. MB94); (iii) owing to the symmetry, the core 
potential and the core velocity vanish at y = 1 ;  (iv) the core current flows only along 
magnetic field lines, i.e. there is no path of electric current from the radial duct to the 
toroidal duct within the fluid to the leading order; (v) the pressure in the core is zero 
to the leading order, i.e. there is no pressure drop in the toroidal ducts. 

Similar to the core, all local and global flow variables in the layers can be expressed 
in terms of the wall potentials and the core pressures. The Hartmann layers have a well- 
known exponential structure. They are not considered here and neither are the corner 
layers A 1 ~ 4 ,  which are unable to carry volume flux in the y-direction. The parabolic 
boundary and interior layers are treated integrally with the most essential information 
about them given by the so-called local flow rates. In what follows we first exclude from 
the consideration layers S and I, which will be treated later separately. 

Consider an arbitrary parabolic layer P in bend i at a wall k parallel to the magnetic 
field (k = 1,3,5,8,9) .  Let us introduce a local Cartesian coordinate system based on 
unit vectors i,, 9, ti,, where f, = 9 x ri,, with the origin at the bottom of wall k at y = 0. 
In the layer di) = M1I2v$), p ( i )  = p$) +Mp1/2p$)7 where index C denotes the core 
adjacent to wall k ;  all quantities with index P are O(1). In layer P the following 
equations and boundary conditions hold : 

jgk = +[$a) - $3 9 +p vZzp$k, j (0  - 1-1 ( i )  A 

CT - $4 y, pgk = O .  

Here Ek = M1”nk is the stretched boundary-layer variable. The other equations and the 
boundary conditions which hold in the parabolic layer are not important for an 
integral analysis. 

Integrating (8 a, b) and using the boundary conditions (8 c-g) gives the expressions 
for the local flow rates q$!t and q$!v carried by the layer in the directions i k  and y”, 
respectively : 

q$! = lr v$). f k  d[ k -  - $$)(nk = 0) - $t), (9 4 
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FIGURE 3. Integral path of electric currents in radial ducts in the fully developed flow region for 
n = 3. 

Using the condition qgly = 0 at y = 2 for layers SRL and SRR and equation (7g)  
for layers F, STL and STR gives 

Taking into account the velocity of the fluid entering layer P from the core, namely 

completes mass conservation within the layer. 
Equation (9a)  expresses the well-known fact that the local flow rate carried by the 

parabolic layer in the direction parallel to the wall and perpendicular to the magnetic 
field is proportional to the local jump in the electric potential across the layer. 

The flow rate q$! may be expressed in terms of the wall current 12). The latter is 

From (9b) and (10) it follows that 

\ J o  
For layers F, STR and STL this implies that the amount of fluid carried by them in the 
y-direction is determined by the current flowing in wall k in the -f,-direction 
integrated from 0 to y ,  while for layers SRR and SRL the flow rate is determined by 
the deviation of this current from being linear with y. 

Consider the local flow rates carried by the parabolic layers at opposite sides of the 
dividing walls. Since the wall potential is continuous, by virtue of (7c,d) the core 
electric potential is continuous across the dividing wall at z = P ( i  = 1, . . ., n) as well. 
Then from (9) and (10) follows that 

(14a, b) 
for i = 1, . . ., n - 1, where the signs + and - refer to the layers P in bends i+ 1 and i, 
respectively. Given the fact that the direction of fk for layer P( -) is opposite to that 
for P( +), (14a, b) indicate that the jets at the dividing walls are equal and opposite. 

(C) ( d + U  ( i f l )  
q P ( - ) ,  t = q P ( + ) ,  t ,  q%), y = - q P ( + ) ,  y 
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This fact, discussed by Madarame et al. (1985) and Molokov (1993) in the context of 
fully developed flows in straight ducts, is a general property of magnetohydrodynamic 
flows in rectangular ducts with thin conducting walls. 

The jets at the dividing wall k vanish if and only if 

If a toroidal duct is concerned, this condition holds for a perfectly conducting dividing 
wall only. For a radial duct this condition holds in the region of fully developed flow 
if either the wall is perfectly conducting or the pressure gradients at both sides of the 
dividing wall are equal. It should be noted that the walls of the radial ducts parallel to 
the magnetic field may be only partially perfectly conducting. The three-dimensional 
problem with these walls being perfectly conducting and with fully developed flow 
conditions as x - t  - 00 is unphysical. One would necessarily have to consider the 
entrance/exit effects, since the three-dimensional currents might flow along these walls 
with no resistance. 

Consider now layers S and I. For layer I the variable & varies from - GO to cc so 
that instead of the boundary conditions (Sd, e) the conditions of matching another core 
are to be used as 6, + - co, which are analogous to (8f, g) .  This yields 

In particular, (1 5 a) indicates that for 1 = 2 (the so-called 180O-bend) qy,)z = 0, i.e. all the 
fluid that enters layer I from the core CR either enters the core CT or flows in the y- 
direction within layer I so that there is no redistribution of fluid in the z-direction 
within the layer. 

For layer S equation (9a) still may be used. Instead of the boundary condition (8c) 
a matching condition with layer I at y = 2 is used for determining q$lu. This gives 

Total volume fluxes carried by the layers may be obtained by integrating (9), (15a, b) 
and (16a,b). 

4. Results and discussion 
The system of equations (2) subject to the boundary conditions (3)-(6) is solved 

numerically. An iterative numerical algorithm to solve equations for a single U-bend 
(n = 1) is described by Molokov & Biihler (1993). To seek the equations governing the 
flow in a system of U-bends iterations between solutions for single bends are organized. 
Iterations stop when the differences between nodal pressures and wall potentials 
between two iteration steps are less than 0.1 %. Results are presented for cy) = c = 0.4 
for all duct walls and l = 12. All ducts have square cross-section (d = 2, 
z( '+~)-z( ' )  = 2), unless otherwise stated explicitly. For simplicity, it is assumed that the 
system of U-bends is symmetric with respect to the plane z = iL. 

4.1. Three bends 
To discuss effects caused by the presence of dividing walls on the flow pattern consider 
the flow in three coupled bends. In each situation two-dimensional effects in the fully 
developed flow region as x --f - 00 will be discussed first. The quantities describing the 
flow in this region are called two-dimensional, since none of them, except pressure, 
varies with x. In the fully developed flow region equations (2)-(6) may be solved 
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FIGURE 4. Projection of the three-dimensional electric current lines on the (x,z)-plane for n = 3, 
y = 1. In the radial ducts these lines are isolines of the three-dimensional pressure. 

FIGURE 5. lsolines of wall potential in bends 2 and 3 for n = 3, y = 1 .  The wall currents flow 
perpendicular to the isolines. There is almost no variation of the wall potential for y > 7. 

analytically (Molokov 1993). For bends 2 and 3 the flow distribution between cores CR 
and layers SRR and SRL is 

* (17a,b) @i) - 2[z("+1) - ( i )  --K(i) l + C  for i = 2, 3, Q ( 3 )  S R R ,  x = - z 1  c 3c C R , x  - 

- 2 
3c 

where K'') = - ap$k/dx(x + - a) and @l)5 denotes flow rates carried by the radial duct 

@&, = - Q ~ A ~ ,  = - [p) - ~ ( 3 ' 1 ,  (17G 4 
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FIGURE 6. Profiles of the x-component of the core velocity at y = 0 for n = 3, y = 1 in (a) bend 2 
and (6) bend 3 for x+-w (-.-.-), x = -0 (-+.... ), x = + O  (-) and x = d (-. .-. .-). 

1 1 4.000 19.4 
2 3.706 10.2 

3{3 4.147 46.0 
5 3.897 138.8 
6 3.897 136.0 

8 3.897 105.7 
9 4.361 58.5 

29.6 

17.4 
- 1.8 

- 50.6 
-48.6 
-41.6 
-26.0 

13.2 

25.5 
15.8 
50.7 
5.9 

18.5 
33.6 
53.9 
76.5 

25.5 
15.8 

- 14.1 
5.9 

- 5.9 
- 18.5 
- 33.6 
-48.2 

-0.231 
-0.265 
-0.265 
-0.278 
-0.278 
-0.278 
-0.278 
-0.278 

0.147 
0.421 
0.322 
1.213 
1.176 
1.060 
0.846 
0.499 

TABLE 1. Main flow characteristics for n = 1, 3 and 9 for equal fully developed pressure gradients 

cores and layers SRR, SRL as x -+ - 00. The flow in bend 1 may be reconstructed from 
that in bend 3 by symmetry considerations. The total flow rates are 

(18a,b) 
If the flow rates Q(') are given, the K(i )  are determined from the system of algebraic 
equations (17), (18). Alternatively, given K(i)  one can determine the flow distribution 
in the fully developed flow region. The ratio y = K(2) /K(3 )  may be used to control the 
flow. 

The deviation of any flow quantity from its fully developed value will be called 
three-dimensional. For example, the three-dimensional pressure prA and the three- 
dimensional pressure drop Apfk, are defined as follows: 

Q") = @A, + 2&!$AR, 2, Q ( 3 )  = @k, + @AR, + @AL, z. 

prh = p( i )  +xK"f), ApfA = lim {pgk  + X K ' ~ ) } .  (194 b) 
2--x 
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9 

..... , ... , I 
Symmetry plane 

FIGURE 7. Sketch of streamlines in the toroidal ducts for n = 3, y = 1 in (a) bend 2 and (b)  bend 3. 
Solid circles indicate locations where the fluid leaves one flow subregion and enters another one. 



Liquid-metal jow in electrically coupled U-bends 85 

Flow with equal fully developed pressure gradients 
It is convenient to consider first the flow with equal fully developed pressure 

gradients (y  = 1). Some preliminary results for this case have been presented in a 
conference paper (Molokov & Stieglitz 1994). 

Far from the junction the flow in the radial ducts is fully developed, and since the 
difference between pressure gradients in all bends in this region is zero, there is no 
excess current that would flow in the dividing walls in the 4-y-direction (Molokov 
1993). The induced core current flowing in planes x = const. passes through all 
channels unchanged and returns back through the sidewalls z = ~ ( ~ 3 ~ ) ~  and the 
Hartmann walls (black arrows in figure 3). As the flow approaches the junction the 
absolute value of the electric potential decreases both inside the fluid and in the walls, 
so that in the radial ducts the three-dimensional currents circulate close to the junction 
with the x-component essentially non-zero (figures 4 and 5). In a duct with no dividing 
walls the three-dimensional core current would flow from the wall z = z(l) to the wall 
z = z ( ~ )  (dashed line in figure 4) and then would close the loop in the walls of the 
toroidal ducts (black arrows in figure 4). Since the dividing walls z = ~ ( ' 3 ~ )  are present, 
part of the three-dimensional current induced in the radial duct of bend 2 flows along 
these walls in the fx-direction as shown in figure 4 (white arrows). As a result, close 
to the junction the second three-dimensional current loop appears, which involves only 
the walls of the toroidal duct of bend 2. Thus the three-dimensional pressure drop 
induced by these currents is higher in bend 2 than in bend 3 (cf. table 1) and more than 
double that induced in a single bend (n  = 1). 

For z > i L  part of the three-dimensional current that reaches the bottom walls 4 of 
the toroidal ducts may eventually leave them to enter the cores CT, where it flows 
parallel to the magnetic field lines since the other two components of the current vanish 
to order 1 (equation (7f)). 

The core velocity in the radial ducts as x-t - co is constant, equal to 0.926, and is 
the same for all bends (cf. equation (7a) and figure 6). Since the side layers at the walls 
= z(l, 4) carry a non-zero volume flux, while ogAR,.  = @AL,z  = 0, the total volume 

fluxes in bends 1 and 3 are higher than in bend 2 (equations (17), (18)). For c = 0.4 
the flow rates are Q(') = 3.706, Q(lv3) = 4.147 and @&JQ(3) = 0.107. As the fluid 
approaches the junction, the three-dimensional currents change the uniform core 
velocity profile and the flow partition between the cores and the parabolic layers. 

Consider bend 2 for z > i L  = 3. The flow pattern here is qualitatively the same as 
in a single bend (cf. the Introduction and figure 7a) with the difference that there are 
no jets at the sidewalls as x + - cc. Closer to the junction the axial potential gradient 
creates a higher core velocity at the wall z = z ( ~ )  than in the duct centre (figure 6), while 
the wall current supports a non-zero volume flux carried by layer SRR in the x- 
direction. This requires a flow redistribution between the core and the layer which is 
created by the positive z-component of the core velocity. However, the volume flux 
carried by layer SRR is small. At the junction it carries less than 1 % of the total volume 
flux in bend 2. 

The fluid that enters the toroidal duct from layer SRR enters layer STR. However, 
this stream does not reach layer F along wall 3 as in the corresponding flow in a single 
bend owing to the weakness of the x-component of the velocity within layer STR 
(figure 8). Instead, it turns in the y-direction withn this layer. 

For the fluid approaching the toroidal duct from the core CR the internal layer Z 
appears to be a permeable wall. Part of the fluid from the core CR penetrates into the 
core CT, while the other part turns inside layer I in the z- and y-directions and flows 



86 S.  Molokov and R.  Stieglitz 

12 

10 

8 

Y 6  

4 

2 

0 
0.4 0.2 0 -0.2 -0.4 -0.6 

(3) 
q . , x  
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around the core CT in the parabolic layers. This flow redistribution results in a jump 
in the core velocity across layer Z (figure 6). The fluid that enters the core CT at x = + 0 
is distributed between layers STR and F. Since the y-component of the core velocity 
vanishes, the fluid flows in the planes y = const., following the isolines of q5p). In the 
major part of the toroidal duct of bend 2 the isolines are nearly straight lines z = const. 
Effectively, most of the fluid from the core C T  enters layer F and creates a jet within 
this layer in the y-direction. There is a volume flux from layer F into layer STR via the 
corner A l ,  so that layer F loses part of the volume flux as the flow develops with y. 
However, the volume flux into layer Ffrom the core is considerably higher, so that the 
total volume flux carried by layer F monotonically increases with y (figure 9). At y = 1 
layer F carries more than 70% of the total volume flux in bend 2. The volume fluxes 
carried by layers Z and STR also increase with y, while that carried by layer S decreases 
owing to continuous pumping of the fluid from this layer and distribution of it between 
layers F and STR. The pumping in the toroidal duct is very intensive, so that layer S 
carrying about 50% of the total volume flux in bend 2 at y = 2 loses all of it to the 
other layers as the flow develops with y .  There is a weak recirculatory flow in the 
toroidal duct for 8.7 < y < 15.3 associated with a negative volume flux carried by layer 
S in this region. This recirculatory flow is exactly the same as that discussed in MB94. 
In addition, a helical type of flow pattern is possible at the corner A2 (not shown in 
figure 7a) ,  which is determined by the combined effect of flow from layer STR into 
layer S for y > 2 (figure 8) and pumping of fluid from layer S into layer STR through 
the core CT. 

Consider the flow in bend 3. The flow pattern here is more complex (figure 7b).  The 
fluid that enters the core CT from the core CR is distributed between layers F and STR 
as in bend 2. The amount of fluid that enters layer STR in bend 3 is significantly higher 
than that in bend 2. 
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FIGURE 9. Flow distribution in the toroidal ducts for n = 3, y = 1 in (a) bend 2 and (b) bend 3. 

Consider now the events at the wall z = z ( ~ )  = 6 .  In the region of fully developed 
flow, far from the junction there is a jet at this wall. Close to the junction the axial 
potential gradient strengthens this jet. As a result there is a very strong jet from layer 
SRR into layer STR, part of which for y < 2 even reaches layer F (figure 8). In layers 
STR and F the fluid turns in the y-direction. For y > 2 mass exchange between layers 
at the corners A1 and A2 changes sign. As a result there is a weak flow from layer F 
into layer STR at the corner A1 and a significant flow from layer STR into layer S at 
the corner A2. The resulting flow pattern may involve a helical type of flow as shown 
in figure 7 (b). The intensity of this helical flow is much higher than in the toroidal duct 
of bend 2 at the corner A2. 

Concerning the wall z = z ( ~ )  = 4, the three-dimensional current in this wall causes 
equal and opposite jets in the layers to both sides of it. This leads to jets in layer SRL 
in the -x-direction and in layer STL in the -y-direction. The negative volume flux 
in these layers is associated with a recirculatory flow. The intensity of the reversed flow 
has a maximum at y = I and monotonically decreases as y decreases (figure 9b). This 
means that part of the fluid, carried by layer STL in the - y-direction, leaves the layer 
to the core CT and then flows to layer F. This recirculatory flow is similar to that 
present in MB94 and that in bend 2, but the layers involved are different. In addition, 
this flow occupies the whole region 0 < y -= 1 close to wall 9 and even extends into the 
radial duct. Indeed, there is a volume flux from layer STL into layer SRL at x = 0 
(figures 7b and 8). Since there is no reversed flow as x - t -  co, all the fluid from layer 
SRL enters the core CR, where the x-component of velocity is positive, and then 
penetrates into the core CT through layer I .  

In the whole toroidal duct there is pumping of the fluid from layers S and STL and 
distribution of it between layers F and STR through the core. As a result of this 
pumping the volume fluxes carried by layers S and STL decrease with increasing y, 
while those carried by layers F and STR increase with y (figure 9 b). 
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Flow with non-equal fully developed pressure gradients 
The flow distribution and the pressure drop depend on the ratio of K(') to K(3) ,  so 

that y may be successfully used to control both global and local flow characteristics. 
Variation of y may be achieved by varying the flow rates Qfi). We recall that the total 
volume flux carried by the system of bends remains fixed, and is equal to 12. 

If Q(2) > 3.706, then y > 1 and the amount of current induced by the core CR in 
bend 2 in the region of fully developed flow becomes higher than that induced in bends 
1 and 3 .  An excess core current closes its loop in the dividing walls z = z('x3) and in the 
top and bottom of the duct 2 (white arrows, dashed lines in figure 3). This current 
creates positive jets at the dividing walls of duct 2 and negative jets at these walls in 
ducts 1 and 3 as x+--co. 

The path of three-dimensional currents is exactly the same as for y = 1, but the 
increase in y leads to a strengthening of the effects described for y = 1. The flow rates 
carried by all the parabolic layers in the toroidal duct of bend 2 increase, while those 
carried by layers in bend 3 decrease (figure 10). However, the decrease of the flow rate 
Q(F3!y is insignificant. The recirculatory flow in bend 3 extends into the radial duct for 
a longer distance than for y = 1. Since the problem (2)-(6) is linear with respect to Q(') 
all flow characteristics vary linearly with it, as does A P , ~  in both bends (figure 11). 

For Q(') = 4 the flow rates in all the bends become equal, while K(') = 0.280, 
IQ3) = 0.258, y = 1.085, Ap$% = 0.434, ApfA = 0.319, i.e. for equal flow rates both the 
fully developed and the three-dimensional pressure drops are higher in the middle bend 
than in the outer one. 

For Q(') > 4 the reverse flow in layer S of bend 2 disappears, while for Q(') higher 
than about 8 it appears in layer S of bend 3. 

An interesting situation occurs when the middle duct carries all the volume flux 
(Q@) = 12, Q(3)  = 0, K@) = 0.705, g3) = 0.068, y = 10.368). Although the volume flux 
in bend 3 is zero, the fluid in this bend is not stagnant. In fact, the recirculatory flow 
in this case is the most intensive in the whole range 0 ,< Q(') < 12. The reason is that 
a negative jet exists in bend 3 in layer SRL. Since Q(') = 0 this reversed flow must be 
balanced by a positive volume flux in the core CR and in layer SRR, which requires a 
small but non-zero value of IP). The same arguments apply to the toroidal duct of 
bend 3, where a negative jet in layer STL exists. A negative jet in layer S also 
contributes to the recirculatory flow. 

To get stagnant fluid in the core CR and layer SRR of bend 3 as x+-w 
one has to assume that K(3)  = 0 (K@) = 3c/(l + c )  = 0.857, y+ 00, Q(') = 14.857, 
Q(3) = - 1.429). There is a negative flow rate in bend 3, since the negative volume flux 
carried by layer SRL cannot be balanced. The flow pattern in the toroidal duct is 
similar to that for Q(3) = 0, so that the discussion in the previous section still applies. 
It is worth noting that K(') is exactly three times larger than in the Hartmann flow (one- 
dimensional flow between parallel walls perpendicular to the field). 

For Q(') < 3.706 (y c 1) the amount of current induced in the fully developed flow 
region in bends 1 and 3 is higher than that induced in bend 2. These excess currents 
again flow in the dividing walls but in directions opposite to those for y > 1 (white 
arrows, dotted lines in figure 3). Therefore the direction of the jets at the dividing walls 
changes sign. The volume fluxes carried by the parabolic layers in the toroidal duct of 
bend 2 decrease while those in bend 3 increase with decreasing Q(2) (figure 10). The 
transition of a flow with y = 1 to one with y < 1 is quite interesting. When y becomes 
slightly lower than 1, the jets at the dividing walls as x + - are very weak. They are 
negative in bend 2 and positive in bends 1 and 3. However, closer to the junction the 
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FIGURE 1 1. Variation of the three-dimensional pressure drop with Q@) for n = 3 in bend i = 2 (-) 
and in bend i = 3 (------). The case of equal fully developed pressure gradients is marked with the solid 
circle. 
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FIGURE 12. Flow paths at the dividing wall z = z ( ~ )  for n = 3 and for y slightly lower than 1.  

jets are opposite, i.e. they are still in the same direction as for y = 1 .  This means that 
in bend 2 for x lower than some x* ,  part of the fluid that leaves the core CR to enter 
layer SRR flows backward within this layer (figure 12). For x > x* the fluid from the 
core CR enters layer SRR and then the toroidal duct. In bend 3, for x c x* the fluid 
in layer SRL leaves it to enter the core CR and then enters the toroidal duct, while for 
x > x* the fluid enters layer SRL from the toroidal duct, then leaves this layer to enter 
the core CR and then enters toroidal duct again. The latter flow path clearly belongs 
to a recirculatory flow discussed above for y = 1. 

When y decreases further, x* increases and finally is shifted into the toroidal duct. 
When y becomes significantly lower than 1 (for Q(2) lower than about 1.5, figure 10) 
the jet in the whole layer STR of bend 2 becomes negative, while that in layer STL of 
bend 3 becomes positive. Thus, a reversed flow from the radial duct of bend 2 for y > 1 
into that for y c I becomes possible within layer STR (see also figure 16 in MB94). The 
recirculatory flow in bend 2 strengthens and involves two vortices: one for z > gL and 
the other by symmetry for z < iL. The recirculatory flow in bend 3 disappears. 

4.2. Wide bend with no dividing walls 
As has been noted in the previous Section, for y = 1 the value of ApaD in a system of 
three bends is more than double that in a single U-bend. The natural question arises 
of whether there is a limit for A P , ~  as the channel number increases. The main reason 
for increasing the pressure drop is the increase in the total width L of the system of U- 
bends. Indeed, the solution to (2)-(6) for the wall potential and the core pressure for 
n = 1 (no dividing walls) as x + - cc is 

Expressions analogous to (20) are well-known (e.g. Moon & Walker 1990). For L p 1 

q55 = -qj8+$(l+c)-1, qj6,,+z(1+c)-1, ~ , , ~ ~ + 1 ,  K+c(l+e)-l, (21a-d) 

so that all the volume flux tends to be carried by the core, while the absolute value of 
the pressure gradient tends to that in the Hartmann flow. The electric potential at the 
sidewalls 5 and 8 linearly increases with L for sufficiently high L. This potential 
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FIGURE 13. Variation of K ,  the absolute value of the fully developed pressure gradient in a single bend 
with +L or of Kin  a system of bends ( K  is equal for all bends) with n = aL (solid line). The value of 
Kin the Hartmann flow is shown with dashed line. 

difference represents the driving force for the wall currents. In the fully developed flow 
the core current entering the sidewalls can complete its circuit through the top and the 
bottom walls of the radial duct only in the planes x = const., i.e. perpendicular to the 
main flow direction. Since the distance between the sidewalls L increases, the resistance 
of the electric circuit also increases linearly with L, and, according to Ohm’s law, the 
magnitude of the wall currents, together with the pressure gradient produced by them, 
tends to a finite value determined by (21 d )  (figure 13). In particular, this implies that 
in a system of straight ducts the pressure drop tends to a finite limit as L+ 00 (Molokov 
1993). 

Since in the second radial duct of a U-bend at y > 21-2, x < 0 the induced voltage 
difference is of the opposite sign, then close to the junction the three-dimensional 
current may shortcut along the sidewalls and inside the core of the toroidal duct. If L 
increases, there is a large electric circuit, shown in figure 1, the resistance of which does 
not increase with L, since the current that enters the sidewalls has to travel a fixed 
length of about 21 along the toroidal duct. This means that the magnitude of the three- 
dimensional currents increases linearly with L, together with the three-dimensional 
pressure drop produced by them (figure 14). 

4.3. Increasing the number of bends 
Consider finally the flow in a wide bend with dividing walls for equal pressure 
gradients as x+-m so that the flow is consistent with that considered in $4.2. 
Calculations for n = 1 , 3,5,7 and 9 are presented in figures 14 and 15. ApaD in the middle 
and the outer bends is shown in figure 14. A p z 1 ) ’ ’  (middle bend) is higher than that 
in a single wide bend of corresponding aspect ratio. The reason is that the dividing 
walls provide an additional path for the electric currents with respect to a single wide 
bend. All these currents pass through the core CR of the middle bend and induce a high 
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FIGURE 15. Variation of flow rates carried by layers F and S in the y-direction at y = I with n (for 
odd n) in bend i = (n+ 1) (middle bend, -) and in bend i = n (outer bend, ------). 

pressure drop there. AP!$,+~)/~ increases almost linearly with L (or n) even for small L, 
while the slope of Apgl)/'  approaches that for a single wide bend. A p g )  (outer bend) 
is significantly lower than Ap&++l)lZ. From figure 14 it is unclear, however, whether ApZ) 
tends to a finite limit or to infinity. In any case the slope of A p g  is much lower than 
that of A p g 1 ) i 2 .  

The flow rates carried by all the layers in all bends tend to a finite limit (figure 15). 
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The limit is almost reached for n = 9. The reason is that the flow rate carried by a 
parabolic layer at an arbitrary wall k of any of the toroidal ducts is proportional to the 
?,-component of the wall current (equation (13)), i.e. only the currents which do not 
cross the symmetry plane y = 1 contribute to the flow rates. The magnitude of these 
currents tends to a constant, because the resistance to them increases linearly with L. 

For equal fully developed pressure gradients and for an arbitrary n the flow pattern 
may be described as follows (cf. main results for n = 9 in table 1). In the middle bend 
i = t(n + 1)  the flow is the same as that discussed in 44.1 for y = 1. Close to the junction 
the jets are created in the positive x-direction. In any other bend i > f(n + 1) there is a 
negative jet at the left sidewall and a positive jet at the right sidewall. For n > 3 in all 
bends, including the middle one, a recirculatory flow is present the intensity of which 
increases with n. For given n the location of the recirculatory flow and the volume it 
occupies both vary from one bend to the other. For example, for i = n = 9 in the 
toroidal duct it involves layers F, STL and STR. It is interesting to note that for n > 5 
layer F in  all the bends carries more than 50 % of the volume flux, while in the middle 
bend it carries even more than 100 YO, i.e. the recirculatory flow is very intensive. 

For non-equal fully developed pressure gradients the flow pattern may be deduced 
from that for n = 3. For example, for equal flow rates in bends both the fully developed 
pressure gradient and the three-dimensional pressure drop are highest in the middle 
bend and lowest in the outer bend. 

For even n the results are qualitatively the same as those for odd n. The difference 
is that for even n there is a dividing wall z = z("/'), which is situated at the symmetry 
plane z = +L, where the condition $ = 0 holds. Therefore, the currents cross this wall 
at right angles, while jets in the layers at this wall vanish and two neighbouring bends 
i = tn  and i = in + 1 behave like a single bend of double aspect ratio with the exception 
that the no-slip condition holds at the dividing wall z = It should be noted that 
the results for even n would not lie on the same curves as those presented in figures 14 
and 15 for odd n. 

5.  Conclusions 
If ducts are electrically coupled via common conducting walls parallel to the 

magnetic field, current induced in one duct may enter the other ducts and change both 
the flow pattern and the pressure drop in the whole system of ducts. If the system 
involves only straight rectangular ducts with fully developed flow the increase in the 
pressure drop is insignificant. The absolute values of the pressure gradients tend to that 
in the Hartmann flow and for a wide range of parameter variation increase by no more 
than 30% of that in a single-duct flow (Molokov 1993). 

If the system involves U-bends, where three-dimensional effects are significant, the 
pressure drop increases linearly with the width L of the system of bends owing to the 
contribution of the three-dimensional electric currents which circulate close to the 
junction. This has also been confirmed experimentally (Stieglitz 1994). For sufficiently 
high L (in fusion blankets n z 40, L = 2n e 80, Malang et al. 1988) the pressure drop 
may reach very high values. 

The effect of global currents on the flow pattern is expressed in the presence of equal 
and opposite jets at the dividing walls. In the radial ducts these jets may vanish if the 
local axial pressure gradients at both sides of a dividing wall are equal. The appearance 
of the opposite jets in a U-bend geometry is unavoidable unless the dividing walls are 
very good conductors. The flow pattern in a system of U-bends is a non-trivial 
combination of the flow in a single U-bend and that in a system of straight parallel 
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ducts. The pattern may involve helical and recirculatory flows in both radial and 
toroidal sets of ducts with several type of vortices. The intensity of the vortex and 
helical motions increases with the number of channels. 

Although for equal fully developed pressure gradients as well as for equal flow rates 
layer F i n  each bend carries more than 50 YO of the total volume flux (in most of the 
bends even more than lOO%), which may be favourable for heat removal from the 
blanket first wall, special attention should be paid to the recirculatory flow. This flow 
accounts for about 50 % of the flow in all the bends, see the flow distribution at y = I 
for n = 9 in table 1. This fluid does not take an active part in convective heat transfer. 
On the other hand, the recirculatory flow which exists even within the frame of the 
present inertialess model may provoke large-scale instabilities in inertial flows and 
lead to an intensive mixing of the fluid within toroidal ducts. This effect, combined 
with possible instabilities of high-velocity jets in the parabolic layers may lead to 
favourable heat-transfer conditions. The final answer on whether such conditions are 
realized should come from experiments performed for blanket-relevant values of M 
and N .  One such experiment (Stieglitz 1994, Stieglitz et al. 1994) for n < 5 shows 
generally good agreement with the present theory for high values of M and N 
(- 103-104). The other series of experiments (Reimann et al. 1993, 1994) performed at 
lower values of N and M (of the order of 10-150 and 100-500, respectively) shows that 
other types of flow patterns than those presented here may exist. A discussion of inertia 
effects and implied modifications in the flow model has been given by Molokov, Biihler 
& Stieglitz (1994). 

To eliminate the dramatic increase of the pressure drop with the number of bends 
and to reduce the amount of the flow involved in a recirculatory motion one has to 
break or to reduce the loop of global currents. One way is to electrically separate the 
radial ducts, which generate the currents, by using insulating ceramic layers inside the 
electrically conducting walls, as is foreseen in the radial-toroidal-radial blanket 
concept (Malang et al. 1988). The other way is to arrange the fluid flow in such a way 
that the currents in neighbouring bends cancel, or at least do not amplify each other. 
This may be achieved if the fluid in any two neighbouring bends flows in opposite 
directions. 

This work has been performed in the framework of the Nuclear Fusion Project of 
the Forschungszentrum Karlsruhe and is supported by the European Communities 
within the European Fusion Technology Program. The authors are grateful to Dr Leo 
Biihler for useful discussions on the topic of this paper. 
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